Nonparametric Confidence Sets for Density

نویسندگان

  • Woncheol Jang
  • Christopher Genovese
  • Larry Wasserman
چکیده

We present a method for constructing nonparametric confidence sets for density functions based on an approach due to Beran and Dümbgen (1998). We expand the density in an appropriate basis and we estimate the basis coefficients by using linear shrinkage methods. We then find the limiting distribution of an asymptotic pivot based on the quadratic loss function. Inverting this pivot yields a confidence ball for the density.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm

This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...

متن کامل

Confidence sets in nonparametric calibration of exponential Lévy models

Confidence intervals and joint confidence sets are constructed for the nonparametric calibration of exponential Lévy models based on prices of European options. This is done by showing joint asymptotic normality for the estimation of the volatility, the drift, the intensity and the Lévy density at finitely many points in the spectral calibration method. Furthermore, the asymptotic normality res...

متن کامل

Nonparametric Modal Regression

Modal regression estimates the local modes of the distribution of Y given X = x, instead of the mean, as in the usual regression sense, and can hence reveal important structure missed by usual regression methods. We study a simple nonparametric method for modal regression, based on a kernel density estimate (KDE) of the joint distribution of Y and X. We derive asymptotic error bounds for this m...

متن کامل

Nonparametric Inference For Density Modes

We derive nonparametric confidence intervals for the eigenvalues of the Hessian at modes of a density estimate. This provides information about the strength and shape of modes and can also be used as a significance test. We use a datasplitting approach in which potential modes are identified using the first half of the data and inference is done with the second half of the data. To get valid co...

متن کامل

Nonparametric Density Estimation and Clustering with Application to Cosmology

We present a clustering method based on nonparametric density estimation. We use Kernel smoothing and orthogonal series estimators to estimate the density f and then we extract the connected components of the level set using a modified Cuevas et al (2000) algorithm. We extend an idea due to Stein (1981) and Beran and Dümbgen (1998) to construct confidence sets for the level set {f > δc} using t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015